Multilayer films assembled from naturally-derived materials for controlled protein release.
نویسندگان
چکیده
Herein we designed and characterized films composed of naturally derived materials for controlled release of proteins. Traditional drug delivery strategies rely on synthetic or semisynthetic materials or utilize potentially denaturing assembly conditions that are not optimal for sensitive biologics. Layer-by-layer (LbL) assembly of films uses benign conditions and can generate films with various release mechanisms including hydrolysis-facilitated degradation. These use components such as synthetic polycations that degrade into non-natural products. Herein we report the use of a naturally derived, biocompatible and degradable polyanion, poly(β-l-malic acid), alone and in combination with chitosan in an LbL film, whose degradation products of malic acid and chitosan are both generally recognized as safe (GRAS) by the FDA. We have found that films based on this polyanion have shown sustained release of a model protein, lysozyme that can be timed from tens of minutes to multiple days through different film architectures. We also report the incorporation and release of a clinically used biologic, basic fibroblast growth factor (bFGF), which demonstrates the use of this strategy as a platform for controlled release of various biologics.
منابع مشابه
Layer-by-layer assembly of biologically inert inorganic ions/DNA multilayer films for tunable DNA release by chelation.
In this work, we illustrate a simple chelation-based strategy to trigger DNA release from DNA-incorporated multilayer films, which were fabricated through the layer-by-layer (LbL) assembly of DNA and inorganic zirconium (IV) ion (Zr(4+)). After being incubated in several kinds of chelator solutions, the DNA multilayer films disassembled and released the incorporated DNA. This was most probably ...
متن کاملControlled release of an anti-cancer drug from DNA structured nano-films
We demonstrate the generation of systemically releasable anti-cancer drugs from multilayer nanofilms. Nanofilms designed to drug release profiles in programmable fashion are promising new and alternative way for drug delivery. For the nanofilm structure, we synthesized various unique 3-dimensional anti cancer drug incorporated DNA origami structures (hairpin, Y, and X shaped) and assembled with...
متن کاملGraphene multilayers as gates for multi-week sequential release of proteins from surfaces.
The ability to control the timing and order of release of different therapeutic drugs will play a pivotal role in improving patient care and simplifying treatment regimes in the clinic. The controlled sequential release of a broad range of small and macromolecules from thin film coatings offers a simple way to provide complex localized dosing in vivo. Here we show that it is possible to take ad...
متن کاملNanoporous block copolymer micelle/micelle multilayer films with dual optical properties.
We introduce a novel and versatile approach for preparing self-assembled nanoporous multilayered films with tunable optical properties. Protonated polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) and anionic polystyrene-block-poly(acrylic acid) (PS-b-PAA) block copolymer micelles (BCM) were used as building blocks for the layer-by-layer assembly of BCM multilayer films. BCM film growth is go...
متن کاملLayer-by-layer-assembled multilayer films for transcutaneous drug and vaccine delivery.
We describe protein- and oligonucleotide-loaded layer-by-layer (LbL)-assembled multilayer films incorporating a hydrolytically degradable polymer for transcutaneous drug or vaccine delivery. Films were constructed based on electrostatic interactions between a cationic poly(beta-amino ester) (denoted Poly-1) with a model protein antigen, ovalbumin (ova), and/or immunostimulatory CpG (cytosine-ph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomacromolecules
دوره 15 6 شماره
صفحات -
تاریخ انتشار 2014